DO NOT FORE:		
Energy ■ Ability to a ■ To cause s	dosomething to change m	nove or
■ Energy cc	nnot be created or from one form	, but n to another.
 Energy quality force/ head 	vality is due to	
-From energy.	high quality energy to _	quality
	of Motion ect in a state of uniform of the content	otion unless ar
● Inertia: The	e property of matter by its state of rest or its	
a straight -So Ion	line. ng as it is not acted upor force.	n by an
• New mini ared	a of focus: Friction	
	encounter d in contact with anoth	

Motion and Machine Unit Notes Name:

The four types of friction
Static friction- friction between surfaces
that are moving past each other.
Sliding friction- the force that opposes the
motion of two surfaces past each other.
R friction- the friction between a
rolling object and the surface it rolls on.
Fluid friction- when an object is moving in
or gas.
Friction
•S an object down until it stops
• Produces
•Wobject down
■ Aerodynamic: D or arranged to offe
the least to fluid flow.
■ Hydrodynamic: A shape designed to move
efficiently through the
all of all was

REA DYDIED

ACTION

Newton's 2nd Law

The relationship between an object's _____ m, its ____ a, and the applied _____ F is F = ma.

The net force on an object is equal to the _____ of the object multiplied by its _____.

3rd Law of Motion

• For every _____ there is an equal and reaction.

Energy can either kinetic or potential.

as a result of i	• , , ,	nergy stored by 	/ an object
Objects tha potential er	ergy is the ene t are elevated nergy. gy is the energ	have a	·
m/s^2)	n kilo) Ition of the ear urface (in m	th (9.8
 The more greater Law of Company in the control of the company in the control of the control o	the universe. the force of at Gravity F = G s an attractive which dependant		n nass of the on

•	Ex. (If you double the mass of the earth,	its
	gravitational force will become	as
	big; if you get 3 times further away from	the
	earth, its gravitational force will be ti	imes
	weaker.)	

Kinetic Energy

- The energy that matter has because of its
- _____ and mass.
- where m = _____of object
- v = ______of object
- ◆ KE = Energy in J

$$KE_{\frac{1}{2}} * m * v^2$$

- Don't forget your order of operations.
- PEMDAS
- For KE, you must do exponents (E) before multiplying (M). So square the velocity first, and multiply by half of the mass.

Kinetic energy

- Translational Energy: M_____ from one location to another.
- V_____energy (sound)
- Electrical energy: Flow of ______.
- Rotational energy.

Kinetic energy is a s	quantity; as it does
not have a direction. Velocity, acceleration, for V	ce, and momentum, are A quantity having
direction as well as magni	
 Mechanical Energy (ME) - and and and kinetic energies. Inclu Just add Potential Energies 	; sum of potential des heat and friction.
 Centrifugal Force: (Does not that makes feel that a force body moving around a centre body's inertia. 	ce is acting outward on a
Centripetal Force: A force follow a	that makes a body ath.
■ Hydropower – Potential to	Kinetic energy
Speed: A measure ofdivided by time. D/T	, = distance

Distance = Speed * time (Multiply)
Speed = Distance ______ by time
Time = Distance divided by Speed

- Velocity = Speed (distance / time) and d
- velocity = Distance Divided by Time
- Acceleration = The rate of _____ in velocity. (m/s²)

The final velocity – the starting velocity, divided by time.

also...
$$a = (v_2 - v_1)/(t_2 - t_1)$$

■ Deceleration – To _____ velocity.

The same formula	but value will be
■ Momentum: A measu body equal to the provelocity. ■ Momentum = Mas	oduct of its and
■ Law C momentum of an mass and its veloc ■ Angular momentu	of Momentum: The object is the product of its city. Um: Rotating objects tend to
direction unless ac When you draw the	at the same speed / cted upon. ne weights inward, your decreases, and your velocity (spin faster).
Amount of Work (w)The amount of F	done depends on two things: (F) exerted.
The D	(d) over which the

Force is applied.

■ Equation for Work - w = Fx_____

Joule: Unit of energy, work, or amount of

	expended in applying a through a distance
•	of conservation of energy, energy (U) is
	oss due to friction. U = K
	f flying object: the path that ugh space under the action, wind, and
	ILL, that causes a change in or shape of an object
Gravity, Electricity, I	Magnetism, and Friction
	S. Man.
Machines ● Tr	_ force from one place to
another. ● C	direction of a force.
	of a force.
force.	or speed of a

Machine: Anything that helps you doWork = Force x Distance
Efficiency: A measure of how much more work must be put a machine than you get out of the machine.
The efficiency of a machine will always be than 100%.
 If there was no friction, the best you could hope for is an efficiency of 100% meaning work in =
- Nasericon
 Law Conservation of energy: energy cannot be or destroyed.
-Simple machines generally require more/ energy to complete a task.
 Force is a quantity which is measured using the standard metric unit known as the
 One newton is the amount of
$1 \text{ Newton} = 1 \text{ kg}^{+} \frac{\text{rn}}{2}$
~ ~2

Quick Cheat Sheet

- Potential Energy (PE) = mass kg * gravity (9.8 m/s²) * height (Answer is in Joules)
- Kinetic Energy (KE) = ½ mass kg * Velocity squared (velocity * Velocity) (Answer is in Joules)
 - Square velocity first because it an exponent (PEMDAS)
- Mechanical Energy (ME) = Kinetic Energy + Potential Energy (Answer is in Joules)
- Speed A Measure of motion, = Distance divided by time (Answer in meters per second m/s)
- Velocity Rate of which an object changes its position. = Distance divided by time and direction. (Answer in meters per second and direction such North, East, South, West, or Northwest etc.) (m/s)
- Acceleration Change in velocity over time. Final Velocity minus the starting velocity divided by time. (Answer is in meters / sec²/ and direction North, etc. (m/s² North)
- Deceleration Same as acceleration but the number will be negative. (m/s²)

- Mass Amount of matter in an object. On earth, weight and mass are the same. (Metric unit is the gram)
- Force = (F=MA) F = Mass (Weight on earth) * Acceleration (Answer is in newtons (m/s)
- Work Force * Distance the force was applied (Answer is in newtons)

New Area of Focus: Simple machines

 Law Conservation of energy: energy cannot be created or destroyed.

Simple machines generally require more work / energy to complete a task.

But they....

- Transfer force from one place to another.
 - Change direction of a force.
 - Increase the magnitude of a force.
 - Increase the distance or speed of a force.
 - This makes work seem easier.

To find Mechanical Advantage

- D______ resistance force (usually weight in g) by the _____ force (Newton)
- Types of machines that do work with one movement.

Pulley

- Uses grooved _____ and a rope to raise, lower or move a load. Three types of pulleys
- A pulley makes work seem _____
 - Changes the _______ of motion to work with gravity. Instead of lifting up, you can pull down.
 - Uses your body _ against the resistance.
- The more pulleys that are used, the more the MA (Mechanical Advantage).
- MA = The number of that support the pulley. The end of the rope doesn't count.

The three types of Pulleys

F_____ pulley No Mechanical Advantage

Movable Pulley

Combined Pulley / Block and tackle

Lever

- A stiff bar that rests on a support called a
 which lifts or moves loads
- MA = length of effort arm _____ length of resistance arm.

The 3 types of levers

Third Class Lever.

- Has Mechanical D
- Requires more force to lift the load.

Wedge: An object with at least one
side ending in a sharp edge.
which cuts material apart.
■The mechanical advantage of a wedge car
be found by dividing the of the
slope (S) by the thickness (T) of the big end.
Wheel and Axle: A wheel with a rod, called an
, through its center lifts or moves a load.
■ The mechanical advantage of a wheel and
axle is the of the radius of the
wheel divided by the radius of the axle

■ Radius: A straight line from a circles

Divide 5 by 1

■ An Inclined plane: A _______ surface connecting a lower level to a higher level
■ MA for an inclined plane is the length of the slope ______ by the height (Rise).

Length
Rise

Run

- Screw: An inclined plane ______ around a pole which holds things together or lifts materials.
 - The mechanical advantage of a screw can be found by dividing the _____ of the screw by the _____ of the screw.
 - The circumference of a circle is the distance around the ______. It is the circle's perimeter. The formula for circumference is:
 - \blacksquare Circumference = π times Diameter
 - C = πd
 - Where $\pi = 3.14$

Compound machines: or more simple machines working together.

DO NOT LOSE THESE NOTES! PLEASE PUT THEM IN YOUR To remove this message purchasto product at www.smartp. SCIENCE FOLDER! Anis documents

Copyright © 2010 Ryan P. Murphy