MATTER, ENERGY, and the ENVIRONMENT Unit Notes Name:_____

(DO NOT LOSE)

First Area of Focus: Matter

Matter: Anything that has_____ and takes up _____.

■ Atom: A basic unit of _____ consisting of a dense, central _____ surrounded by a cloud of negatively charged _____.

Element – A substance that is made entirely from ___ atom Compound – Made up of or more bonded together. Universal Solvent: Liquid water is able to __ a large number of different chemical compounds. Homogeneous mixture – _____ throughout. Heterogeneous – A mixture of _____ or more ______. The mixture is not ______ throughout (Ex. Chicken Noodle (quo2 Solvent – The substance that does the _____ (usually larger amount) – _____ is the universal solvent. Solute - The substance that gets _____ (usually lesser amount)

Solubility - How much _____ can dissolve in a substance before it becomes saturated.

Supersaturated: When no more _____ will dissolve. (crystals visible)

Kinetic Molecular Theory:

- The molecules are in constant _____.
- This motion is different for the 3 states of matter.

States of Matter -

Solid (s) has a definite _____ and ____

Ordered

Molecular

Structure of

Frozen Water

Liquid (I) Definite ______ but not shape

Semi-Ordered
Molecular
Structure of
Liquid Water

Gas (g) _____ definite shape or volume

Random Molecular Structure of Vaporized Water

Plasma (p) Ionized gas that emits _____.

Dark Matter – A hypothetical form of	that is believed to
make up% of the universe; it is	(does
not absorb or emit light)	
Dark Energy – A hypothetical form of	that
permeates space and exerts a negative pres	
have effects to ac	count for the
differences between the theoretical and obs	servational results of
gravitational effects on visible matter.	
Law Conservation of Matter	mattar is paithar
In any physical or chemical change, rnor	
changed from one to ar	
Physical Change	S [©] C [©]
☐ Changes form solid >	_ > gas >
□ Doesn't change	
	6 Cie
0 9 7 DI2	~
Plast Plast	na /
K William	E
Gas Vaporization	st
Condensation	Emthalpy of System
=I /_	5
Liqu	uid a
Pepositi	T E
Melting	
Solid Freezing	
	J

 The effort needed to ______ a substance decreases from a S->L->G.

Chemical Change: The change of substances into other substances through a reorganization of the _____.

The Six Types of Chemical Reactions

- _____: When oxygen combines with another compound to form water and carbon dioxide.
 - $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$
- _____ Reaction: When two or more simple compounds combine to form a more complicated one. A + B = AB
 - $Zn + 2 HCI \rightarrow ZnCl_2 + H_{2(g)}$
- _____ Reaction: A complex molecule breaks down to make simpler ones.
 - Opposite of Synthesis Reaction. AB → A + B
 - 2 H₂O ---> 2 H₂ + O₂ (Electrolysis of Water)

•	Displacement: When one element trades
	places with another element in a compound. BC + A -> AC + B
•	Displacement: When the anions and cations of
	two different molecules switch places, forming two entirely
	different compounds.
	• AB + CD → AD + CB
	 AgNO₃ + NaCl → AgCl + NaNO₃
•	/ Base: When an acid and base react with each
•	other.
	Offici.
`	
S ase	
	Law - Volume of a gas
WI	th temperature.
	Law - Equal volumes of gases, at the same
	, contain the same
nι	umber of particles, or molecules.
	Co. S.
	10° CM
Th	e ideal gas Law: PV = nRT (pressure times equals
th	e number of times the gas constant times
0	
•	□ P=Pressure
	□ V=Volume
	□ n=number of molecules
	□ R=gas constant
	□ T=temperature
Р	Law states that if you apply
' _	to fluids that are confined (or can't flow to
	nywhere), the fluids will then transmit (or send out) that same
þſ	essure in all directions at the same rate.
_	No. 11. 12. Description of the College
	Viscosity : Resistance of liquid to

High viscosity = Travels slow b	ecause of high
Low viscosity = Travels fast be	ecause low
, ,	that is submerged in a a force equal in magnitude to d that is displaced.
Buoyancy : Buoyancy force is _ fluid displaced by the body.	to the weight of
New Area of Focus: Energy	² Co ²
THINK TINSTAAFL	200
	de brichase the
□ Is □ No	250,00
	cho tot.
□ Thing	all ear
□ A	Se SC
□ F	69000
☐ Lunch	nothing is from
Energy comes from somewhere –	noming is nee.
Law Conservation of Energy: Energy cannot be	or but can
diminish in quality from useful to le	
The seven forms of energy - Mechanical (PE+KE)	
SoundChemical	
- Electrical	
- Light / Radiant	
Convection: Vertical circul	
and cool . F	Flow of heat by this circulation.

- Conduction: The movement of ______ from one molecule to another.
- Heat / Thermal

- 1st Law of Thermodynamics
 - Change in energy of a system is ______ to the heat added to the system _____ the work done.
 - You can't get something for nothing.

- 2nd Law: The energy content of the universe is always diminishing in quality.
 - Heat Flow -> Warm to cold.

 The third law of thermodynamics: 	All molecular movement stops
at absolute	00010
Temperature: The degree of _	or coldness
of a body or environment.	63.500
Corresponds to its	activity.

Corresponds to its	activity.
	in Sing.
- Nuclear (Another form of Energy)	W.
Nuclear Energy - The energy that deals of an atom. Nuclear	with the changes in the energy is produced when
the nuclei of two atoms join together (_nucleus of an atom splits apart (f	. .

Area of Focus: Waves

- A wave: In physics A wave is the movement _____ and _____
 or back and forth.
- The three types of waves:
 - - Water, Solid, Gas,
 - Electromagnetic Waves: Do _____ require a medium to move through.
 - Matter Waves: El_____ and Particles.
- Light is a particle and a _____ and goes out in a straight line unless it bumps something.
- Refraction: The ______ of a wave when it enters a medium where it's speed is different.

- **Diffraction**: Bending of
- Lens: A transparent optical device used to or diverge transmitted light and to form images.
- Convex top / Concave bottom

Concavo-convex

New Area of Focus: The electromagnetic spectrum

• The Electromagnetic spectrum: The entire frequency range of electromagnetic waves.

Long waves are less powerful, short are more powerful.

- Waves of the electromagnetic spectrum travel at the speed of light. ______ miles per second or 300,000 kilometers per second in a ______.
 - Visible light measured in ______.
 - All others are measured in radiation.

- Radiation when it hits something can be...
 - Absorbed
 - Reflected
 - Scattered (Diffraction, Refraction)
 - Transmitted
 - Nothing, it missed.
- The hotter, the more radiation released.
- Radiowaves: ______ wave in the spectrum, size of a football field. Not very powerful.
- Microwaves: Waves with wavelengths ranging from 1 m down to 1 mm.
- Infrared Radiation: Wavelengths between ______ and visible light. (heat)

Visible light consists of...

- Ultraviolet (UV) Has ______ wavelengths than visible light. thus it more powerful than visible light.
- Ultraviolet (UV) has many wave lengths as well. All of which can cause cancer.
 - UVA
 - UVB
 - UVC
- X-Rays: They have ______ wavelengths and therefore higher energy than ultraviolet waves.

•	Gamma ray: Highest energy,	_ wavelength.
	Emitted during radioactive decay of a fission p	roduct.

- Laser Light Amplification by S______ Emission of
 - Lasers cross over many parts of the EM scale.

Electricity: Electricity is related to charges, and both _____ and ____ carry a charge.

The Atom

Lightning is a big spark that occurs when lots of ______ move from one place to another very quickly. Unequal distribution of electrons.

Static Electricity: The ______ of positive and negative charges.

Magnetism

Electric Fields: The funky area near any electrically-charged object

□ replace electrostatic for funky.

Coulombs Law:				
The gre	eater the	, the	e greater the	,
_	eater the the force.		between the	em, the
Current is a flo	w of electrons, o	or individual		charges
Conductors, Ir	nsulators, Semi-c		•	nergy is ving charge.
Semi-conduct	ectrons flow eas or: Conductivity (electronics use)	between _		lle.
Insulator : Elec	ctrons do not	e	asily	2350 (00
current (DC) c (DC) D direction (AC) -A forth, c	main kinds of eland irect current is a on. (Batteries) Alternating curre hanging its direct and outlets / hou	flow of chainst is a	current (A rge always in of charge	back and
electricity fleAmps are a electronsWatts is a m	measurement of easurement of easurement one _	of the electrical po	f wer created	
Volt: A measu	re of the	or p	ressure unde	r which

Ampere: How much moves through a wire in one second is measured in amperes. Basically, the larger the size of wire, the the ampere capacity.
Watt: The amount of electricity consumed per second is measured by what are called watts, calculated by multiplying volts amps. Most household electrical usage is billed in
kilowatt hours, or the amount of hours times 1,000 watts.
Electrical Current Conversion Triad
Melit 1901
Watts Countries
S Divide Divide
Divide Divide
Divide Divide Volts
Volts Multiply Amps

Resistance: Anything in an electrical circuit that _____ the flow of current is referred to as resistance. (ohms) Ω

Ohms Law

V = Volts, $R = Resistance \Omega$, I = Current (amps)

$\mathbf{A}\mathbf{A}\mathbf{A}$	$\alpha \alpha n$	Otic	m
IVI	agn	C112	
	- 3	•	

A magnet	is an object or a device that gives off ar)
	magnetic field.	

Faraday's Law: The changing of a magnetic field can create .

Electromagnets: By running _____ current through a wire, you can create a magnetic field.

Compass: A navigational instrument for determining relative to the Earth's magnetic poles.

 New Area of Focus: Relativity, Einstein, and E=MC2
General Relativity is a theory of the structure of
 Time slows down with increased velocity.
Special Relativity: ■ The laws of physics are equally valid in all frames of moving at a uniform velocity.
 The speed of light from a uniformly moving source is always the, regardless of how fast or slow the source or its observer is moving.
 E=MC2 E = Energy (Joules) M = Mass C = Speed of Light in vacuum 300,000,000 meters per second (really 299, 792,458)
Almost all of the energy on earth comes from our
Energy The ability to
First Law of Thermodynamics: Energy can be (changed from one form to another), but i
can neither be created nor destroyed.
2nd Law of Thermodynamics : The energy content of the universe is always in quality. Heat Flow -> Warm to cold.

absolute
New Area of Focus: The Environment
Environmental Science / Studies
Environmental science is the study of among physical, chemical, and biological components of the environment.
Environmental studies is the systematic study of human interaction with their
Ecocentrism: Believing the, rather than any individual organism, is the source and support of all life.
The 4 R's -Re -Our stuff becomes harmful waste
□ Re □ So we can reduce □ Re
 Last because it uses energy and TINSTAAFL Rethink: Reinvent everything with the R's in mind.
Frugality: is about getting the maximum value for your dollar while living.
 Strategies of frugality: reduce waste, curb expensive habits be happy with less, don't be materialistic.
Sustainability: Meeting the of the present without compromising the ability of future generations to meet their own needs.

Human Population Growth

Anthropogenesis:	_ shaping their environment.
Fossil fuels are borrowed organic matter from millions of years o	: The energy rich
Carrying Capacity: the amount of land will yield and, therefore, the num an area of land will support.	that an area of ber of that
Megalopolis : A very largeinvolving several major cities and tow	complex usually

Forms of renewable energy

- Hydropower.
- Damless Hyrdropower.
- Ocean thermal energy conversion.
- Wave Energy.
- Tidal Energy.
- Wind.
- Solar Chimney.

- Solar Thermal.
- Liquid Biofuels.
 - Vegetable oils
 - Ethanol
 - Biobutanol
 - Sweet Sorghum (food and fuel)
- Solid Biofuels.
 - Wood
 - Manure
 - Crop waste
 - Biogasification
- Biogas.
 - Digesters that produce flammable gas.
 - Algae as a fuel source.
- Nuclear (kind of clean / renewable)
 - Nuclear waste needs to stored away forever.
 - Nuclear material is not an abundant resource.

SAVE THESE NOTES! DO NOT LOSE!

