Geology Topics Unit Notes (PLEASE DO NOT LOSE!)

Name:

Continental Dr	itt: The gradual	
of the	across	the earth.
	s - The earth's	
mantle are bro	ken into	called
	plates float on the m	
(moving very s	lowly)	
Evidence for Conti	inental Drift	
-The Shapes		
-Same	found on di	fferent
continents		
These are t	he pictures on the p	uzzle pieces.
-The	rock structures	on different
continents		
-Fossils of	and Anima	ls in Antarctica
-M	layers in sea fl	oor spreading
	and Laurasia were tv _ before P	
	_ ~ ~ ~ ~ ~	•
Pangea – The "Sup once	per Continent'' All of	the plates were

We know the material of the interior of the earth based on how ___ and ____ waves move through planet. (Both Body Waves)

- P Wave: P_____ wave. Moves lateral and faster.
- S Wave: S_____ waves. Stronger and moves back and forth (Slower moving than P)

Layers of the Earth

- Layers formed _____ in Earth System History (Archean Eon) G_____ pulled heavy elements toward the middle.
- Inner Core: S______ Iron and Nickel (Dense).
- Outer Core: L_____ Iron and Nickel
- Mantle: Composed of Magnesium Silicates,
 - _____, Calcium
 - Outer Mantle (asthenosphere)
- Lithosphere: The outer part of the earth, consisting of the ______ and upper _____.
 - Lithosphere is broken into tectonic ______.

Pictures for heat transfer

Convection: Vertical circ	ulation in which war	m
and cool		
Flow of heat b	y this circulation.	
Conduction: The movement	ent of	from
one molecule to another	•	
Radiation:	that is radiate	d or
transmitted in the form of	rays or waves or pa	ırticles.
The two types of Crust		
O	Crust (Basalt) Dense	
С	_ Crust (Granite) Les	s Dense

PLATE BOUNDARIES

<u>Divergent Boundaries</u>: At divergent boundaries new crust is created as two or more plates _____ away from each other.

Mid-Atlantic Ridge is like a baseball because it ______ the earth, showing the places where new earth is formed.

Convergent Boundaries: Here crust is destroyed and recycled back into the interior of the Earth as one plate dives another.

Ocean Convergent: Two ocean plates
_____ and one goes under the other.

Archipelago (Island Arc) – Group of _____ islands formed from ocean curst convergence.

Continental Convergence (Mountain Building)

Continent Divergence (Moving _____) Rift Valley

Transform-Fault Boundaries: Where two plates are sliding _____ past one another. (To

be discussed more later)

Hawaii is caused by a hot ______: A location above an upwelling of ______ from the mantle.

VOLCANOES

Volcano - An op	ening in the Earth's	crust through
which molten	and	erupt.

The Negatives of Volcanoes

- D______ and Destruction
- Loss of land until...?, Permanent loss of structures.
- Release of poisonous and greenhouse
- Eruptions can have a tremendous impact on global ______.
- The positives of volcanoes
 - -New _____ is formed
 - -Release of healthy _____
 - -Many _____ and ores worth \$

-Hominids used obsidio	an (cutting tools) to
advance	
-Volcanic ash	land
-Volcanic eruptions fo	rmed oceans and early
·	
Types of Volcanoes	
F	
Shield – Olympus Mons or	n Mars Ex.
Dome	
Ash	
Composite	
Caldera: Large	
explosion of a volcano that c	ollapses into a depression.

PARTS OF A VOLCANO

Main Features of a Volcano

Pyroclastic rock: Rock	from
volcano	
Lahar - A flow of volcanic as	sh and water.
Magma is	the earths surface
Lava is above the surface	
3 Types of Lava	
Felsic lava – High in	(sticky and
chunky) Highly explosive.	
Mafic Iava – Flows more	, high in
Intermediate – Has a hig	her amount of silica (Silica
= liquid quartz or sand)	

Viscosity: Resistance of liquid to $_$	
High viscosity = Travels	
resistance	_
Low viscosity = travels	because
low resistance	
Types of lava when cooled	
'A'ā — R lava, (older and has
crystalized, Pronounced "ahh ahh	11
Pāhoehoe – Fresh lava, (Pa ho	y hoy) Basaltic lava
that is and	d flowing.
New Area of Focus: Faults and Fold Orogeny: The formation of mounta upward Usually associated with fold and other	ain ranges by intense _ of the earth's crust. ding, thrust faulting,
Movement of tectonic plates	r agusas tha platas ta
fault and fold.	r causes the plates to
• Stress on a rock can be	
● Compression ► ←	
● Tension ◆	
• Shearing 1	
Confining / Uniform → ←	_
†	

- Fault Break / c_____ where movement occurs.
- Fold Collision of crust _____ rock layers "stress"

Normal Fault – Pulling ______ tension causes crust to drop down.

Reverse / Thrust Fault – C______ forces cause crust to move up.

Lateral or Strike Slip Fault –Crust moves
_____ each other in opposite directions.

Types	of	Fol	ds
•	- (`on	٦r

- Compression ■ Anticline: ② O layer is at core of
fold (Oil) ■ Syncline: © Y later is at core of fold (Water)
- Tension
- Sh
Earthquake – Shaking of the earth's crust from a sudden release of
Seismograph - An instrument used to measure the caused by an earthquake
Richter Scale - Scale for measuring earthquake m A magnitude 7.0 earthquake generates times larger amplitude waves than those of a magnitude 6.0.
Epicenter: The point on the Earth's surface that is directly the hypocenter or focus. • Just above the earthquake.
Tsunami - An ocean wave generated by a submarine, volcano or landslide.

- Can travel across whole oceans.

ROCKS AND MINERALS	
Rock – Mass or grouping of m They can be big They can be small Used in buildings In (non-living)	
Minerals are natural inorganic (non-living) that join together (c) to make unique compositions.	
A crystal is a solid in which the are arranged in a repeating pattern.	
Uses of minerals Gems \$ O, Mined for \$	
Types of crystals. H (Four axes, three are equal in length and lie at an angle of 120° fron each other). T: (3 axis, all unequal and	\cap
none at 90° angles).	

: (All axi	s unequal in
90° degrees from	each other).
:All axis	
of them are at righ	nt angles to each
the third is lies at a	an angle other
(Three	axes, two are
gth, one is unequa	al.)
•	ree axes are
gth an at 90° degr	rees from each
$ \begin{array}{c} $	$a_1 = a_2 \neq c$
angles a_{1-3} to $c = 90^{\circ}$ angles between a axes = 6	all angles 90°
HEXAGONAL	TETRAGONAL
a ≠ b ≠ c angle between a&b and b&c = 90°;	a ≠ b ≠ c all angles ≠ 90°
MONOCLINIC	TRICLINIC
	90° degrees from :All axis of them are at right the third is lies at a . (Three gth, one is unequal to the gth and the general section of the general section

Crystal Prope	rties / Chemical Bonds	
• C	Crystals: Cov	valent bonds
between	all of the atoms.	
Exam	ple: Diamond, Zinc Sulfic	de crystals.
• M	Crystals: Indiv	idual metal atoms
of metalli	c crystals sit on lattice sit	es.
Many	free electrons. High me	Iting points.
•	Crystals: The ato	oms are held
together	by electrostatic forces (i	onic bonds).
• Ex: (N	aCI) table salt	
• M	Crystals: Contain	ns recognizable
molecule	s within their structures.	
	ogether by non-covaler	
	ler Waals forces or hydro	•
• EX	ample – Sucrose in rock	canay, ice cube
 Two main 	types of minerals	
Silicate M	inerals – Contain	and
oxygen. 75%	of all minerals.	
. •	ıte minerals	
Non-silico	ite minerals: All others.	

Physical Property of Minerals- a chard be observed or measured without	
the identity of the substance. $\overline{}$	
Luster – How light is	from a
mineral.	
Metallic (shiny)	
or non-metallic (dull)	
Hardness – How easily a mineral of	can be
Color – Tells what n mineral.	nake up the
Streak – The of the	e mineral when it is
broken up and powdered	
Specific Gravity – How	the mineral is?
The rock cycle – How one rocks	into
another. ● Driven by continental	(plate
tectonics)	(5:5::5

The Rock Cycle

Igneous Rocks: Molten Earth	•
$ullet$ Intrusive – Cooled $_$	crust (slow)
• L	crystals
Extrusive – Cooled _	Earth's surface
(faster).	
● F gra	in crystals or no crystals.
Igneous rocks	
■ Mafic (D	in color) is used for
silicate minerals, mo	agmas, and rocks which
are relatively high in	n the
elements. (Magnes	ium and Iron)
◆ Felsic (L	in color) is used for
silicate minerals, mo	agmas, and rocks which

have a _____ percentage of the

heavier elements. Have more of the lighter elements. (S and o, aluminum, and potassium) Feldspar
Classification of Igneous Rocks B – Dark, heavy (dense), Iron G – Light colored, less heavy, filled with oxygen A – Between the two
Common Igneous Rocks Granite is Igneous Rock types include Q and f Basalt Ob – Glassy Gabbro Rhyolite
Metamorphic – Rock that forms due to extreme and
Common Metamorphic Rocks Slate Gniess M Schist

Sedimentary Rocks	
Sediments are c	and
ctogether	
Caused by weathering, e	rosion, and deposition
Usually I	
Layers can be from old liv	ring materials
().	
Common Sedimentary Rocks	
L	<u> </u>
Sandstone	
S	
Conglomerate	

Earth System History

Earth History Components

Earth system history has _______,______, and ______components

•	Uniformitarianism: Laws of nature have n
(c over time.
•	The system is fragile. Changes in living conditions
•	for animals have been
	throughout earth's history.
•	99.5% of all things that have ever lived have
	become
	Principle of superposition – O rocks and
•	ossil are on bottom, y on top.
1	
,	fossil are on bottom, y on top. C -Youngest
•	
1	C -Youngest
1	
1	C -Youngest
1	C -Youngest

GEOLOGIC TIME SCALE				
Time Units of the Geologic Time Scale				Development of
Eon	Era	Period	Epoch	Plants and Animals
Phanerozoic	Cenozoic	Quaternary	Holocene 0.01- Pleistocene	Earliest Homo sapiens
		Tertiary	Pliocene 5.3- Miocene 23.8- Oligocene 33.7-	Earliest hominids "Age of Mammals" Extinction of dinosaurs and many other species
			Eocene 55 Palaeocene 65	
	Mesozoic	Jurassic 208-	"Age of Reptiles"	First flowering plants First birds Dinosaurs dominant First mammals
	Palaeozoic	Permian 286 Pennsylvanian 320 Mississippian 360	"Age of	Extinction of trilobites and many other marine animals First reptiles Large coal swamps Amphibians abundant
		Devonian Silurian	"Age of Fishes	First amphibians First insect fossils Fishes dominant
		Ordovician 505- Cambrian 545-	Invertebrates"	First land plants First fishes Trilobites dominant First organisms with shells
O		Vendian 650	"Soft-bodied faunas"	Abundant Ediacaran faunas First multicelled organisms
Archean Proterozoic	2500	Preca com about 8	rely called mbrian prises 7% of the I time scale	First one-celled organisms
-₹ Hadean	3800 4600 M	a		Age of oldest rocks Origin of the earth

Precambrian	
Hadean, Archean, and Proterozoic Eon's	
Earth's M layers form (Denser to middle Formation of Earth's Crust (c). • Meteorites bombard the planet and carry with it water molecules and amino acids (building block)	t
of protein).	
M created from protoplanet impact (Theia)	
A originates (No oxygen yet)	
 Earliest begins (primitive protocells) Microbes helped produce an atmosphere through photosynthesis. 	
First Multi-cellular life (cells)	
Explosion of new a (sea)	
Paleozoic Era Vendian, Cambrian, Ordovican, Silurian, Devonian, Carboniferous, and Permian Periods M invertebrates dominate	5.
Jawed Evolve	

Plants invade I	(Oxygen to atmosphere) emerge
First Amphibian First R	
First winged inse	ct
Mesozoic Era Triassic, Ju	rassic, Cretaceous Periods
D	_ dominate
First Birds	
First Mammals	
First F	
K-T Mass Extinction	on Event, mya
Cenozoic Era	
Tertiary, an	nd Quaternary Periods
M	change
Earliest Monkeys	
Climate become	es drier
Panama attach	es South America to North America
First	hominids
Modern Man (W	hoa)
Civilization	
Age of Exploration	on, Industrial and Computer Age

SAVE THESE NOTES FOR THE HW Bundle Copyright © 2010 Ryan P. Murphy